Intro to Exponents

	Label the parts of this expression.	2 Fill in the blanks. If a number is "squared" that means it is raised to the \qquad 2nd power. If a number is "cubed" that means it is raised to the 3rd \qquad power.
	Re-write this repeated multiplication in exponent form. $\begin{gathered} 7 \times 7 \times 7 \times 7 \\ 7^{4} \end{gathered}$	4. Re-write this repeated multiplication in exponent form. $\begin{gathered} 2 \times 2 \times 2 \times 2 \times 2 \times 2 \\ 2^{6} \end{gathered}$
	Calculate these "squares". (Hint: Use your multiplication table.) $\begin{array}{ll} \mathbf{6}^{2}=36 & 7^{2}=49 \\ \mathbf{9}^{2}=81 & \mathbf{1 2}^{2}=144 \end{array}$	Calculate this exponent. $3^{3}=3 \times 3 \times 3=27$
	Calculate this exponent. $14^{2}=14 \times 14=196$	8 Calculate this exponent. $\begin{gathered} 10^{4}=10 \times 10 \times 10 \times 10 \\ =10,000 \end{gathered}$
9	Use the exponent button (x^{y}) on a calculator to find the value of this exponent. $2^{10}=1,024$	Use the exponent button (x^{y}) on a calculator to find the value of this exponent. $5^{7}=78,125$
mathantics.com © ${ }^{\text {a }}$ ($\begin{aligned} & \text { See Video for step-by-step Math Plus Motion, LLC } \\ & \text { solutions to each problem. }\end{aligned}$		

